EE365: Example: Dynamic Pricing
Dynamic pricing

\[x_{t+1} = \begin{cases} \ x_t - 1 & \text{if } w_t \geq u_t \text{ and } x_t > 0 \\ \ x_t & \text{otherwise} \end{cases} \]

- \(x_t \in \mathcal{X} = \{0, 1, \ldots, n\} \) is stock at time \(t \)

- Assume one customer arrives per period (time periods are very short)

- \(w_t \in \{0, 1, 2\} \) is the reservation price, maximum price customer willing to pay

 distribution is \(p_i = \text{Prob}(w_t = i) \)

 \[
 [p_0 \quad p_1 \quad p_2] = \begin{bmatrix} 1/2 & 1/3 & 1/6 \end{bmatrix}
 \]

- \(w_t = 0 \) means no sale made at any price

- \(u_t \in \{1, 2\} \) is the price we ask
Rewards

- if a sale is made, we receive the price u_t

\[
g_t(x, u, w) = \begin{cases}
u & \text{if } w \geq u \text{ and } x > 0 \\ 0 & \text{otherwise} \end{cases}
\]

- any stock leftover after time horizon $t = T$ we sell for salvage price $s > 0$

\[
g_T(x) = sx
\]

- mean total reward

\[
J = E\left(\sum_{t=0}^{T-1} g_t(x_t, u_t, w_t) + g_T(x_T)\right)
\]
Random rewards

with state-feedback policy $u_t = \mu_t(x_t)$ we have a reward of the form

$$J = \mathbb{E}\left(\sum_{t=0}^{T-1} g_t(x_t, w_t) + g_T(x_T) \right)$$

define conditionally expected cost $h_t(x) = \mathbb{E}(g_t(x_t, w_t) \mid x_t = x)$, then

$$J = \mathbb{E}\left(\sum_{t=0}^{T-1} h_t(x_t) + g_T(x_T) \right)$$

so can use value iteration for computation
Effect of prices

\[T = 400, \, n = 100, \, x_0 = 100 \]

- with policy \(u_t = 1 \), we always sell at low price (or not at all)
- almost always sell all stock \((\text{Prob}(w_t \geq 1) = p_1 + p_2 = \frac{1}{2}) \) so \(J \approx 100 \)
Effect of prices

- with policy $u_t = 2$, we always sell at high price (or not at all)
- on average sell 67 items ($\text{Prob}(w_t \geq 2) = p_2 = \frac{1}{6}$)
- so $J \approx 33 \times (0.1) + 67 \times 2 \approx 137$
Distribution propagation

for \(t = 0, 50, 100, 150, 200 \), policy \(u_t = 1 \) on left, \(u_t = 2 \) on right
Value function plots show $v_t(x)$ vs. x for policy $u_t = 1$.
Value function

plots show $v_t(x)$ vs. x for policy $u_t = 2$
Rate control policy

- to do better, we try rate control policy $u_t = \mu_t(x_t)$ given by

\[
\mu_t(x) = \begin{cases}
2 & \text{if } x/n < (T - t)/T \\
1 & \text{otherwise}
\end{cases}
\]

- if the rate of sales so far is enough to make the target, sell at a high price
Simulation with rate control policy

- vertical lines show times of switches between $u_t = 1$ and $u_t = 2$
- mean reward $J = 148$
Value function for rate control policy

plots show $v_t(x)$ vs. x
policy comparison

- $t = 300$, value function for rate control is red, for $u_t = 2$ in blue
- for small stock, no benefit to rate control policy
- for large stock, marginal benefit is salvage value
Distribution propagation for rate control policy

for $t = 0, 50, 100, 150, 200$, rate control policy on left, $u_t = 2$ on right
Simulation with closeout policy

- mean reward $J = 147$
- policy is $u_t = \begin{cases} 2 & \text{if } t \leq 300 \\ 1 & \text{otherwise} \end{cases}$
Simulation with optimal policy

- mean reward $J = 149.7$
- optimal policy sells at high price initially
Cost distributions via Monte Carlo

\[u_t = 2 \]